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A new class of half-integer rank spherical tensors is introduced. The motivation for investi- 
gating this new class of tensors originated from a desire to be able to partition matrices using 
mixtures of fictitious integer and half-integer spin labels. However, it is shown that they can 
also be used as annihilation/creation operators for spin-1/2, 3/2, etc., particles. In particular, 
half-integer rank tensors can be used to add/subtract a spin-l/2 particle from a given ensemble. 
Thus they can be viewed as the natural generalization of the raising and lowering operators 
I±, in that they change both I and M, simultaneously. 

The concept of a "universal rotator" is introduced and it is demonstrated that half-integer 
rank tensors obey the same contractional and rotational properties as their integer counter- 
parts, but with half-integer rank. In addition, it is shown that half-integer rank tensors can be 
used to factorize the Pauli spin matrices. Finally, an example of the use of half-integer rank ten- 
sors in the block-diagonalization of a simple 3 × 3 matrix is presented and discussed. 

1. I n t r o d u c t i o n  

It has been known for many  years that  integer rank irreducible tensor opera tors  
T~(I) [1] can be used to describe real physical operators  on single spin systems. 
Such tensors possess well documented  rotat ion and commuta t ion  properties,  and 
can be represented by spherical harmonics.  More  recently, it has been shown that  
Fano ' s  unit spherical tensor operators  U~(Ii, Ij) [2,3] can be used to describe 
coupled nuclear spin systems evolving under various hyperfine interactions. Fo r  
example, for three coupled spin-1/2 nuclei, the total angular m o m e n t u m  can take 
on the values o f / =  3/2, 1/2, and 1/2 ~, where the spin states 1/2 and 1/2 ~ differ by  
virtue o f  their different coupling schemes. Thus the Hami l ton ian  for the three- 
sp in - l /2  system and the density matrix can be described in terms of  the U~(Ii, Ij), 
where Ii a n d / j  can take on the values of  I = 3/2, 1/2, and 1/2'.  Fo r  unit  spherical 
tensors with L' = / j ,  it can be shown that Ug(Ii, Ii) is identical with the single spin 
operator T~(Ii). However ,  when Ii y~/j, the U~(Ii, Ij) are off-diagonal  and non- 
square if [Ii[ ~ Ibl. Such off-diagonal tensors are unobservable,  bu t  they play an 
impor tant  role in exchanging informat ion between the various spin states available 
to the system. 
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In this paper a new class of half-integer rank tensors is introduced. The motiva- 
tion behind this work was provided by a desire to (i) generalize Fano's unit spheri- 
cal tensors fJ~(Ii, I:) to half-integer rank tensors, and (ii) address the problem of 
block-diagonalization, using mixtures of half-integer and integer spin [4]. For 
example, it should be possible, at least from a mathematical point of view, to block- 
diagonalize a simple 3 x 3 matrix into a 2 x 2 @ 1 x 1 matrices, using fictitious 
spins ofI1 = 1/2 and 12 = 0, respectively. 

In the course of this work it soon became apparent that (i) half-integer rank ten- 
sors obey the same multiplication and commutation rules as their integer counter- 
parts, but with K half-integer, and (ii) half-integer rank tensors can be viewed as the 
generalization of the familiar creation and annihilation operators, a t and a, for 
two level spin system, to multi-level spin systems. In essence, half-integer rank ten- 
sors can be used to add or subtract spin 1/2 nuclei from a given spin system, 
thereby changing the total spin I and total projection M, simultaneously. 

The structure of this paper is as follows. In the following three sections, the basic 
properties of half-integer rank tensors are explored. This is followed by a discus- 
sion of the creation and annihilation operators for multi-level spin-1/2 spin sys- 
tems, in the strongly coupled representation. Finally, the problem of block- 
diagonalizing a simple 3 x 3 matrix into a 2 x 2 @ 1 x 1 matrices is discussed 
within the framework of both half-integer and integer rank unit spherical tensors. 

2. Ha l f  integer rank unit  spherical t e n s o r s  

Unit spherical tensors of integer rank K were first used by [5,6], in the theory of 
radioactive decay. However, since unit spherical tensors form an orthonormal set, 
they can be used to describe any matrix. For the purposes of this paper, the unit 
spherical tensors are defined via 

(IiMi[fJ~(ii, Ij)[ijMj)=(_l)~_m, 2Kv,~(  Ii K Ij ) (1) 
-M, Q Mj ' 

or alternatively 

(iiMilfJ~(li, ij)[ijmj) = ( _ l ) , + M t _ K ~ (  Ii Ij K )  
- M ,  Mj Q ' (2) 

a form which is useful in proving the orthogonality of the unit spherical spherical 
tensors (see below). The reader should note that eq. (2) differs from that of ref. [6] 
(eq. (12.42)) by a phase-factor ( -1)  -K. With the phase convention used in this 
paper, the unit spherical operators reduce to the single spin irreducible tensor 
operators 2r~(I) of Buckmaster [1] for Ii = I/= I. Further, for integer K all the unit 
spherical tensors are real, whereas for half-integer K, all the unit spherical tensors 
are pure imaginary. 

Following [6], but with a change in phase, the Hermitian transpose is defined via 
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<~M:I gr~(zi,/yl/iM~> : <Z;Mil £r~(/i,/j)I~Mj> * . (3 )  

Using (3), together with the symmetry properties of the Wigner 3j coefficient, it 
can be shown that 

[:~ (el, Ij)t : (_ 1),,-/:+Q+2r ~r_KQ (/j., Ii), (4) 

Note that this transpose differs from that for integer rank tensors by an extra phase 
factor ( -  1)2/¢. For integer rank tensors this phase factor is unimportant. 

Given equations (2) and (4) it is easily shown that the unit spherical tensors 
form an orthonormal set. Explicitly, 

Tr [ t]~ (//,/j) t (Y~r' (//,/j) ] 

_- ~ (IjMjIO~(Ii,~)tII, M,)(I~M~I ^ K'U& (/~,/j)I~Mj) 
M.M: 

/, 

-M,  M: Q' 

( 
M~,Mj - -  i 

= 6Kx,~Q~, (5) 

where we have used the orthonormal and symmetry properties of the Wigner 3j 
coefficients [7]. 

As with integer rank tensors, it is possible to project out the half-integer compo- 
nents in the usual way, i.e. 

-- (6/ pI~(Ii, Ij) 

where M is an arbitrary matrix, and p~ (Ii, Ij) is the magnitude of the unit spherical 
tensor/7~ (Ii, Ij) appearing in M. Thus any matrix can be reduced to a sum of inte- 
ger and half-integer rank unit spherical tensors, multiplied by their appropriate 
coefficients p~(Ii, Ij). It should be noted that half-integer rank unit spherical ten- 
sors are always "non-square". The matrix dimensions of half-integer rank tensors 
must differ by an odd number. 

As an example of half-integer unit spherical tensors, consider the case of the 
3 x 3 matrix mentioned earlier. This matrix can now be partitioned using the spin 
labels Ii = 1/2 a n d / j  = 0, giving rise to block diagonal 2 x 2 and 1 x 1 matrices 
and two non block-diagonal 2 x 1 and 1 x 2 matrices. The block diagonal 2 x 2 
matrices spanned by the I = 1/2 manifold have already been given (see for example 
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Table 1 
^I/2 I The half-integer unit spherical operators U;~/2 (D 0) and ~r~ ~ 2 (0, ½) / . 

o:,,, o>= (a) 12 ~2' 

011/2(n l~ = (0 i) /2 w,  i) 

~_,,,:o, (~) 1/2',2) v) = 

0~/2 to _h = ( - i  0) 1/2 ~,~) 2/ 

t a b l e  1 (b)  o f  ref .  [3]). T h e  o f f - b l o c k  d i a g o n a l  m a t r i c e s  c a n  be  seen  in t ab l e  1. I n  a 
s i m i l a r  f a s h i o n ,  a 5 x 5 m a t r i x  c a n  be  p a r t i t i o n e d  us ing  the  sp in  l abe l s  I = 1 a n d  
1 /2 .  t he  o f f  b l o c k - d i a g o n a l  m a t r i c e s  f o r  this  case  a re  s h o w n  in t ab l e  2. 

3. F a c t o r i z a t i o n  o f  i n t e g e r  r a n k  t e n s o r s  

I t  is o f  s o m e  i n t e r e s t  to  e x a m i n e  the  p r o d u c t s  o f  h a l f - i n t e g e r  r a n k  t e n s o r s .  F o r  
t he  i r r e d u c i b l e  t e n s o r s  o f  r a n k  1 /2 ,  we f ind  

~/-1/2 (1 ^ 1 / 2  1 [ ~ - 1 ]  ^ 
1 / 2 k ~ ' 0 )  e l / 2 ( 0 , ~ )  ~ 0 - -  U ~ ( 1  1 2 g) '  

Table 2 
fT1/2(1 l_~ fT3/2tl l~ frl/2(l ^3/21 The half-integer unit spherical operators ~ ±Q ~., 2J, ~ ±Q ~ ", i), ~ ~:0 ~i, 1 ) and U:~ Q (~, 1 ). 

o 'G( l ,  ½) = ~ 

frl/2(1 
1 ) =  o ~ 1 

iz3/2/1 !~ 0 03/2 (1 !~ 
~3/2~*,2) : -3/2~,*)2) : 

0 

~T3/2(I I'~ " TT 3/2 ( l  I~ " 
~ i / 2 , . , ~ , = - ~  - ~ 112,.,~,=~3 0 

-1  

o>!,>__(:o ,) (o o Oo) 
- ' , '  o o ~/?,(½,1)= - i  o 

~3,,,, 1> (~ ~ 0) ~3,2,!1> ( 1 0  ~) 
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j I/2 (! 0) ffl/2 (D l) [01 00] frl (11,  1/2``2' v-1/2~,~2, ' = = W-lkS~21' 

fT1/2( l f l ,  fT1/2((i  fT1/2( l f lh fT1/2(D1 h [10 O]  V/~T01 1 1 
= = ( > 9  v1/2 ``2' v/V_l/2``v, 1) + v -1/2``2' v l ~1/2 ``~' 5,' -- 1 ' 

~__fl/2(1D, f r l / 2 ( {  } frl/2 /1 fl'~ f)'l/2 (fl 1, [10 01] ^ o l I  
1 / 2 , 2 ,  v ,  ~ -1/2``  ~ ,  1) _ ,~ - 1 / 2 , 2 ,  w V l / 2  , ~ ,  v = = v ~ u ;  (5, 9 "  
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(7) 

Thus the K = 1/2 rank irreducible tensors can be used to "factorize" the Pauli 
spin matrices. However these are not unique. For example using table 2, for spins 
1/2 and 1, it can be shown that 

j3/2(1 ^3/2 1 2[ 0 ; ]  2frl(1 1, 
1/2``2' 1)Ul /2( l '~)  = g 0 = - 3 v l  '2 '2 / '  

.f3/2 (_1 1)fT3/2 (1 1, 2 [  0 003 _2_frl :11 ,  
1/2\2~ " -1 /2 '*  ~ 2J = 1 m_ 3'-'-1k2~ 2] 

( _ ] 3 / 2 ( 1 ^ 3 / 2 1 f [ 3 / 2 (  1 ^ 3 / 2 1  111 0 I V/2 fTl(11~ 
1/2``5,1)U~-1/2(1,i) + v-1/2~i, 1) U1/2 (1, i) = -~ 0 -1  -- 3 "~0,5,~J, 

j3/2(1 ^3/2 1 fz3/2 (1 ^3/2 1 I 10 ~1 - - V ~ o ( I ' I ' "  (8) 1/2 ``5' 1) U°_I/2(1, g) - v-1/2'.5, 1) U1/2 (1,5) = - = 2 

These results can be generalized to unit spherical tensors characterized by spins 
11 = 1/2 and I2 = I, where I is general. 

4. Commutation and rotational relationships 

Following [2], it is a relatively straightforward matter to show that the multipli- 
cation of two unit spherical tensors is given by 

(J~(Zi, Ik)(J~'(Ik, Ij) = ~_,B(K,K',X, Ii, Ij, Ik)(KQK'Q/IXQ)fJf(Ii, Ij), (9) 
X,Q 

where the constant B( K, K ~, X, Ii, Ij, Ik ) is given by 

B(K,K,,X, Ii,Ij, Ik)=(_I)I,+Ij+Ocv/(2K+ I)(2K, + I ) { K  K' X }  Ij I, Ik " (10) 

These relationships hold for both integer and half-integer rank tensors. A proof of 
this result is given in appendix A. 

Using eqs. (9) and (10), it is possible to generate the commutation relationships 
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[3±, (J~(Ii, Ik)] = v/(K :F Q)(K + Q + 1)(J~:~(Ii, I~), 

where 3z and 3± are given by 

=  Iz(i), 
i 

(11) 

3± = ~ I±(i). (12) 

Note that the Iz(i) are all in non-unit form, and the sum over i runs over all the 
spin states (fictitious or otherwise) available to the spin system. These operations 
hold for both integer and half-integer operators. A proof is given in appendix B. 

For single spins, the wave functions [Im> transform according to 

IIm>--+ ~ DIm,,,,(a,g, 7)llm'>, (13) 
,,,, 

where 
I ~Drn'rn(OL, g, 7) = <Im'lD(a,/3, 7) 1/m5 

= <Ira' I exp iTIz exp i/3Iy exp iaIzllrn>. (14) 

Here the D/,m(a,/3, 7) are the well known rotation matrices, for passive rotations 
of the co-ordinate system, see for example [8]. 

We now generalize equations (13) and (14) to the case of multiple connected 
spins. In ref. [2], it was shown that the unit spherical tensors (ff~(Ii, Ij) for arbitrary 
Ii and/ j  transform according to 

D(ol,/3, 7)~J~(Ii, Ij)D(o~,/3, 7) t -- ~ (J~(Ii,[j)~)~,Q(O~,/3, 7) . (15) 
Q, 

Thus following a rotation through the Euler angles (a,/3, 7), the unit spherical 
tensors rotate within the manifold spanned by / i  and/g., independent of the other 
tensors in different blocks. This result can be also generalized to half-integer rank 
tensors [9]. Indeed, the Racah like commutation relationships of eq. (11), which 
hold for both integer and half-integer rank tensors, are equivalent to the statement 
that under rotation from one co-ordinate system to another the unit spherical 
tensors transform according to eq. (15), for K both integer and half-integer. Thus 
the half-integer spherical tensors obey the same rotation properties as spinors, a 
not entirely unexpected result. 

Next we observe that the results embodied in eqs. (11), (12) and (15) can be 
used to define a "universal spin operator": 

Duni (o~,/3, 7) = exp i73z exp i/32y exp ia3~, (16) 
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which holds for both single and multiple connected spin systems. Note that the 
exponential operators appearing in eq. (16) are block-diagonal and cannot link dif- 
fering spins. The link between differing spins is effected solely by the unit spherical 
tensors appearing on the LHS ofeq. (15). 

Finally, we state without proof that non-unit spherical tensors can be 
constructed from their unit counterparts, using the "normalization factor" given 
by [2]. 

5. Creat ion and annihilat ion o p e r a t o r s  

The raising and lowering operators 

I÷[I,m) = v/(I  23 m)(I + m + 1)l/,m 4- 1) (17) 

play an important role, in the theory of angular momentum. Here the action of 
the operators I:L is to change the state of the azimuthal quantum number m, whist 
leaving the spin I unchanged. In this section it is shown that half-integer (integer) 
rank spherical tensors can be used to (i) create spinor (boson) fields, respectively, 
and (ii) change both I and m simultaneously. 

^ i / 2  1 We commence by examining the simplest operator UI/2 (~, O) which creates a 
spin i /2  particle in the m = + I / 2  state, starting from the spin zero state. In full 
3 × 3 matrix form 

Ill /~TI/2 [I flh 0 0 "~1/2 ~2, "/ -- 0 i . (18) 

0 1 0 

Here the horizontal line in the column vector is a guide to the eye. The first two 
upper levels represent the spin up and the spin down states of the spin 1/2 particle, 
respectively, whereas the last entry represents the [00) spin I -- 0 state. 

The annihilation operator which returns the [!,2 ½) state to the spin zero state 
[00) is the transpose of the creation operator. This is easily verified by noting 
that (i) 

[ ̂ w~/21 t ^ l / 2 1  )1 (19) Tr /2(~,0) U1/2(~,0 = 1, 

and (ii) since the operator product inside the trace is a 1 x 1 matrix, the action 
of the transpose is to reverse the creation of the [I = ½, m = ½) spinor state. Clearly, 
these arguments can be generalized to any spin I. The creation and annihilation 
operators for a spin I in the ]I,m) state are given by 0reX(X, 0) and try(X, 0) t, 
respectively. 

The situation for products of half-integer spinors is a little more complicated. 
We begin by examining the products listed below: 
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Da/2r'!) D1/2~!°~ i ( x / 2  O ) ( 1 0 )  1 (oOX~) 
= ~ 0 1 i - v/~ , • ~,/2 ~-, 2 ~,/2 ~2, ~J - ~  0 0 

( 0 0 ) ( / 0  1 1 ( i )  fr'/2 ~1 '~frl/2:' O)= i 1 i - 
"--l /2k~'2] 'I /2k2'  - -~  0 V/2 0 V/3 ' 

1/2(1 1)/~T1/2 (1_ 0 ) =  
' /2~'~2 "-1/2k2~ 

(o) 
x/~ 0 0 1 1 , 
0 i l  - v,~ 0 
0 

(Z °)l:/ (:) fZ 1/2 (1 l~/~r 1/2 (1 0) i 0 i 1 (20) 
= - , 3  , / i  

From an examination of the above equations, it is clear that the products of two 
half-integer rank tensors creates a spin I -- 1 state, with the expected azimuthal 
quantum number m. However, their amplitudes are rather puzzling. For example, 

1 the product of two K = g rank tensors, both with order Q = Q' = g, should create a 
2 1I = 1, m = 1 ) state with amplitude 1 rather than V/2. Moreover, these difficulties 

cannot be circumvented simply by replacing the unit tensors by their non-unit coun- 
terparts. 

However, these problems can be resolved by defining creation and annihilation 
operators via 

= 1,_ K 2 ~ 1 ¢ i c , ,  _1) 
C ~ ( I , I - ½ )  t ( - )  V 2 - ~ Q t ' ,  I 2 , 

1,+K / 2 1 +  1 ¢ ,K , ,  1)t (21) c (I-½,II = ( -  J V2--g- oet ,I-  , 

respectively, where K = ½. Note that when K = ½ and I = l, the numerical constant 
appearing in eq. (21) is unity. Thus eq. (18) is retained but with (i) the spherical 
operator now replaced by the appropriate creation operator, and (ii) a change in 
phase. 

With this simple change, eq. (20) can be rewritten in the form: 

(.,1/2(1 ! ¢ e l / 2 ( !  0) t 1 
~1 /2~ ' ' 2 J  ~1/2~,2 ' = 0 ~--- ' 

0 
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(22) 

Note that the coefficients of the final column vectors are now in accord with 
expectations. 

When a third spin-1/2 particle is added to the two spin-1/2 spin system, the 
following possibilities occur: 

(23) 

with a similar set of results for the M = - 1 / 2  and - 3 / 2  state. Thus viewed in the 
light of creation and annihilation operators the reason for the half-integer rank ten- 
sors is now clear. They can be used to create/annihilate spinor states with half-inte- 
ger spin. 

In a similar fashion creation operators can be defined for spin 1 bosons, using 

(24) 

where K has now been set equal to unity. Further, in general, it can be shown that 

(25) 
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A proof of this result can be found in appendix C, for both integer and half-integer K. 
Finally, we remark that the framework developed above for half-integer spins 

bears a strong resemblance to the spinor eigenvectors: 

[ j, m) = ~'J++mx'j-m 

v/(j  + m)! ( j_  m)! , (26) 

where 

= 1 1 
x+ 

1 1 X- = I i , - i ) ,  (27) 

(see, for example, Edmonds [7]). The difference between the two representations 
is simply that the monomials of eq. (26) are expressed in the decoupled representa- 
tion, with no spin labelling. However, the unit spherical tensors developed in this 
paper are the appropriate choice for strongly coupled spin systems, where spin 
labelling is paramount. For single spin-1/2 systems of course, both representations 
are identical. 

6. Block diagonal izat ion using half-integer rank  t e n s o r s  

In a previous paper [4], the problem of block-diagonalizing Hamiltonian 
matrices was examined using Fano's unit spherical operators [J~(Ii, Ij) together 
with an exponential unitary transform due to Slichter [10]. In particular, it was 
shown that any matrix could be re-labelled in terms of fictitious spins, enabling a 
wide variety of differing unit spherical tensors to be used in the diagonalization pro- 
cess. But it was noted that mixtures of non-integer and integer spins could not be 
used. For example, a 3 x 3 matrix could not be partitioned using spin labels 1/2 and 
0, because unit spherical tensors with integer rank cannot 'link' integer and half- 
integer spins, by virtue of the vector coupling rule. Similarly, 5 x 5 matrices cannot 
be partitioned using spins labels 1 and 1/2. However, this impasse can be overcome 
by the use of half-integer rank unit spherical tensor operators. 

As an example of the use of half-integer rank tensors in the block-diagonaliza- 
tion process, consider the simple example of an I = 1 nuclear ensemble evolving in 
the presence of a Zeeman offset, an axially symmetric quadrupole interaction, 
and an rf field applied along the x-axis in the rotating frame (see [11]). Thus the 
Hamiltonian takes the form 

Aw Tlo 2 2 T11(a), (28) ~'(./1] = @ V 3,.,,QTo -031 

or, alternatively, in matrix form 
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I z  = 

~ / h  = 

1 0 

03Q 031 
A03 + - -  

3 

031 203Q 

v~ 3 
0 031 

v~ 

- 1  

0 

031 

v~ 
-A03 + 

(29) 

where the symbols possess their usual meanings. The eigenvalues of this matrix 
can, of course, be found using standard techniques. However, for the purposes of this 
paper, we shall attempt to block-diagonalize this simple matrix into 2 x 2 • 1 x 1 
matrices, using an admixture of integer and half-integer rank tensors. 

Firstly, to simplify the mathematics, we shift the energy reference from zero to 
-030/3.  Secondly, we re-label the Hamiltonian according to 

Iz--- 1 - 1  0 

031 

v~ 
031 

Aw 0 

~ ' / h =  0 -A03 

031 031 

v~ ,/i 

(30) 

(33) 

-WQ 

Finally, we re-label this matrix in terms of two fictitious spins I1 = 1, and 0. Thus 
the Hamiltonian matrix of eq. (30) can be partitioned into a diagonal and off- 
diagonal matrices 

~.~t = ~_~ + ~ ( ) D '  (31) 

where 

Zz= ½ 21 0 
Aw 0 0 

2 f ~ / h =  0 -Aw 0 (32) 

0 0 -WQ 

and 
I 1 0 

[ z =  2 2 

031 
o o -~ 

031 
~C'oD/h= 0 0 -~ 

031 031 0 

v~ v~ 
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Alternatively, in unit  spherical form 

x ; / h  = VSA~I(I-, l) -~QO°(O,O) 
2 2  

and 

(34) 

easily shown that eq. (37) reduces to 

d 
2(hco + coQ) 

Aw 0 0 
-w12wQ 

~ '  = 0 -Aw 0 + 2(A~ - @  
0 0 -w9. 

0 

[s, x ; ] _  : x ; D .  

If  this can be done then the Hamiltonian reduces to 

x '  = xD - ½[s, Xo~]_, 

(36) 

(37) 

which is block-diagonal to second order in S. After some manipulat ion it is easily 
shown that  a suitable t ransformation is given by 

^ 1/2 S = ctul/2-¢rI/2̀1~, O,s)+/3U1/2(O, ½, a ) , (38) 

where 

iwl iwx 
O~ - -  Aco -1- a ) Q '  / 3  - -  A o ;  - w a  (39)  

Note  that  if we are "on resonance", i.e. Aw = +WQ, this t ransformation must  fail 
because even ifwl is weak one or either of  the two denominators in eq. (39) must  go 
to zero. For  the purposes of  this section therefore we shall assume that  we are suffi- 
ciently far "of f  resonance" for this not to be a problem. With this assumption it is 

-JIO"Q 
2 ( A w  2 - J 0 )  

-w} 

2(Aoo - ~oo) 

0 al~Q 

which is clearly block-diagonal, correct to S 2. We are now in a position to make 
contact  with normal  second order perturbat ion theory. Using standard techniques, 
it is easily shown that the energy eigenvalues, correct to w~l, are given by the diago- 
nal entries in eq. (40). 

To make further progress, it is necessary to evaluate the t ransformation 

0 , (40) 

D1/2f1  O, a)  " ^ 1/2 1 5C~./h -i~1 ~1/2 u, = - ,~1  u ~ :  (0, ~, =). (35) 

Our strategy should now be clear. We hope to block-diagonalize 5ff I into a 2 x 2 
and a 1 × 1 matrix, spanned by the two fictitious spins I = ½ and 0. 

I f  the strength of  the rf  field wl is small, the prescription advocated by Bowden 
and Prandolini [4] can be used. Specifically, we seek a t ransformation S such that 
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9£ I' = e-~SS£~ e+~S , (41) 

where A is an adjustable parameter. Given the eigenvalues and eigenfunctions of  
S, the precise form of eq. (41) can be easily found using projection techniques. The 
eigenvalues of  S are 

A1 = 0; A2 = - r / v ~ ;  A3 = r/x~2; 

r = ~ +/32 , (42) 

with eigenvectors 

~1 =~ 1½'½> ÷z  1~'-½>'r 

- i o ~  i/3 1 0 
~,~ = 7rr 1½,½> + ~-rr 1½,-l> + ~ 1  ,0>, 

ia  i/3 1 0 
~u3 = ~ ? .  [½' ½) - ~ r r  ]½' -½) + ~ l  , 0 ) .  (43) 

Using Mathematica we find that the transformed Hamil tonian can be re-written 
in the block diagonal form 

~ " =  ~c~ + ~ D  (44) 
where (i) 

u .~1(1 l"l/~Tl(1 1~ 0 1 1 ^ 1 1 1 1 1 ^ ~D = ~0 k:, :/,-,0 ',:, :,' + P0 (:, :) ~0 (:, :) +/91 (:, :, a) U~ I 1 

+ p°(0, 0) U0°(0, 0) (45) 

and (ii) 
t/ _1/2[1 t~ ~'~rl/2[1 t~ a ) +  ^l/2rt~ 1 ^ 1/2 1 

9£OD = /-'1/2~i, v, ~,) ul/2 ~i, v, ~,1/2~v, ~, s) U1/2 (0, ~, s) .  (46) 

Our task therefore is to find values of a,/3, and A which will simultaneously reduce 
the coefficients of  the two half-integer rank tensors appearing in eq. (46) to zero. 

The precise algebraic forms of the two off-diagonal Fano coefficients appearing 
in eq. (46) are 

pl/2tl O,a) 2x/~Awa/32sinh0 a (Aw(a2-/32)+r2o-~Q)sinh20 
1 / 2  ~,~, - -  r3 ~- ~3r3 

i/3wl (a +/3) cosh 0 iawl (a - /3 )  cosh 20 
?.2 ?.2 

pl/2(0,½, s 2x/2Awa2/3 sinh0 /3 ( A w ( a 2 _ / 3 2 ) + r 2 w g . ) s i n h 2 0  
1/2 ---- r 3 x/~r 3 

ic~wl (o~ +/3) cosh 0 i/3wl (~ - /3 )  cosh 20 (47) 
- -  ?.2 +- ?.2 
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where 

)~r 
0 = x / ~  . (48) 

In general, it is difficult to find values of a,/3, and A which will reduce the two 
Fano coefficients to zero, simultaneously. We have therefore considered a few spe- 
cial cases. 

If the resonant offset Aw is zero, a solution can be found by (i) dropping the 
restrictions given in eq. (39), (ii) setting a = -/3 and (iii) substituting A = A'i. With 

• • • i / 2  1 these changes it can be shown that the off diagonal coefficients Pl/2(g, 0, a) and 
1/2 1 Pl/2 (0, ~, s) can be made to vanish by setting 

0 = )~'a = 1 tan-1 (2w-~Ql) . (49) 

With this transformation it is easily shown that 

= 

~ - +  4 4 + 4 

- - T  4 4 12 I- 4 

0 0 

0 

0 , (50) 

6 2 

where we have reshifted the energy reference back to its original value. Thus we 
have successfully used half-integer rank tensors to effect block-diagonalization. 
However, it should be acknowledged that for the simple case ofAw = 0, the charac- 
teristic equation can be factorized according to 

l [ ( w Q -  3A)(9A 2 + 3ZwQ- 2W2Q- 9w2)] = 0, (51) 

thereby indicating that block-diagonalization is possible. 
In an attempt to make further progress, in the general case, we have substituted 

the explicit values of a and/3 (eq. (39)) into our two expressions for the off diagonal 
Fano coefficients (eq. (47)). After some manipulation we find 

iAwc°l (Ac° + c°0) (x/~ s! nh0 ) _l/2rl a a) = + cosh0 /_q/2t.i, v, Ao., 2 + jQ 

iwawl(AW-wa) (sinh 20 ) 
- AwE +w~ \ ~ cosh20 , 
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91/2{O iAwwl(Aw-wp_)(x/2s!nhO ) 
= + X-gT  cosh0 

iwQwl (Aw + wo) (sinh 20 ) 
-~ Aw ~ +a~Q \ ~ r r  cosh20_ . (52) 

From an examination of these equations it is evident that, in general, we cannot 
choose a value of 0 which will reduce both the off-diagonal Fano coefficients to 
zero, simultaneously, because of the change in sign of the last terms in the two 
coefficients. The best one could do is to choose a value of 0 which minimises the 
magnitudes of the two coefficients in question. However, if we could choose a value 
of 0 such that 

tanh 0 = tanh(lrl/x/2) = Irl/x/2, 

tanh 20 = tanh(v~lrl) = v ~ l r l ,  (53) 

then all four terms vanish identically. In fact, both these equations can be satisfied 
provided (i) r is small and (ii) we set A equal to unity. But this, of course, corre- 
sponds to case of perturbation theory considered earlier. 

In summary therefore, although we have demonstrated the use of half-integer 
rank tensors in the diagonalization process, it would appear that "force" block- 
diagonalization can only be achieved using an iterative procedure. 

7. Conclus ion 

In this paper, a new class of half-integer rank tensors has been introduced. These 
tensors are a natural extension of the non-square integer rank tensors developed 
by [2,3]. In particular, it has been demonstrated that (i) half-integer rank tensors 
can be used to factorize the Pauli spin matrices, (ii) the multiplication rule for half- 
integer and integer rank tensors is identical, (iii) the Racah commutation relation- 
ships [:Jz, f]~(Ii,/:)]_ still hold for half-integer rank tensors, and (iv) under rotation 
of the co-ordinate system through the Euler angles (a,/3, 7), half-integer rank 
tensors obey the same rotational properties as their integer counterparts, but with 
K half-integer. 

In addition, two applications for half-integer rank tensors have been discussed. 
In the first place it has been shown that such tensors can be used to create/annihi- 
late spinor eigenvectors, in the strongly coupled representation. In essence, they 
represent the generalization of the creation and annihilation operators a t, a, respec- 
tively, for two level systems. Secondly, the problem of block-diagonalizing a single 
3 x 3 Hamiltonian into 2 x 2 @ 1 x 1 matrices has been examined in some detail. 
In particular, it was shown that results obtained using the unit spherical tensor 
approach are in agreement with those obtained using standard perturbation 
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theory. However, an attempt to "force" block-diagonalization in a single step was 
unsuccessful, except in special circumstances. 
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Appendix  A 

CONTRACTION OF UNIT SPHERICAL TENSORS 

Consider the matrix element 

M <Iimij U~(Ii, Ik) ^ K' = U~(Ik, Ij)lIjmj>. (a.a) 

Using sum over closure, together with eq. (1), and the symmetry properties of the 
3j coefficients, it can be shown that 

M = [(2K + 1)(2K' + 1)]l/2(--1)Ik+~-2m'+Q 

mk --?n i Q tnk mj -mk 

Using an identity given by Landor  and B6rnstein [12], the summation over the 
two 3j coefficients appearing in (A.2) can be re-expressed in the form 

~--~( Ii K Ik ) ( ~ [j Ik ) = ~-~(_l)ik+X_m,+ff (25(+ l ) 
--mi Q mk mj --ink mk X,Q 

x K' 6" X Q' Q -mi mj 

= y ' ~ ( - 1 ) / k + x - " ' + e ( - 1 ) x + / e + x ( 2 X  + 1) 
9£,Q 

{ I i g ~ ) ( g  g ! ~ ) ( I i Ij ~ )  (m.3) 
x K' Ij Q ~ --Q --mi mj ' 

where we have reversed the summation over Q in obtaining the last line of (A.3). 
On substituting (A.3) into (A.2) therefore 
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M =[(2K + 1)(2K' + 1)]l/2E(--1)21k+lj-3m'+O+K+K'+2JC'(25( "4- 1) 
X,Q 

x K' 12 5( Q Q~ -Q -rni mj ' 

where we have made use ofQ = Q + Q~. 
Next we observe that 

(IimilfJf(li,12)lljmj) = (25( + 1)l/2(-1)lj-m'( li 5( 12 ) 
-mi  Q mj 

= (2J( + 1)l/2(--1)IJ-mi(-1)Ii+IJ+:r(-liikm 

(A.4) 

(A.5) 

Consequently, on combining (A.4) and (A. 5) 

M = [(2K + 1)(2K' + 1)]I/2E(--1)2(Ik-mi+K)+2(:r+Q)(--1)--1l--IJ-:r 
J(,Q 

× 12 Ie Ik (KQK'Q'IKQ)(IimilOf(I"IJ)I12mJ)' (A.6) 

where (i) use has been made of the symmetry properties of the 6j coefficient, and 
(ii) the 3j coefficient involving K, K t, and 5(, has been replaced by a Clebsch- 
Gordan coefficient. Finally, we observe that (i) for all values of 5(, both integer or 
half-integer, 2(5(+ Q) is even, (ii) for all allowed values of Ik, mi and 
K, 2(Ik - mi q- K) is even, and (iii) for all allowed values ofli, Ij and 5(, (Ii -t- [j + 5() 
is an integer. Consequently, we may write 

O~(Ii, Ik) ^~' U~ (1k,12)= y~,B(K,K' ,X,I , , I j ,  Ik)(KQK'~IXQ)fJf(I~,12) , 

(A.7) 

where the constant B( K, K', K, Ii, 12, Ik ) is given by 

B(K, K', X, Ii, 12, Ik) = (-1)I'+I&X[(2K + 1)(2K' + 1)]1/2{ K 
12 /~ /k ' 

(A.8) 

which holds for all K, K', and 5(, integer or half-integer. 

Appendix  B 

RACAH LIKE COMMUTATION RELATIONS 

We commence by examining the commutation relationship 
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[:J_-, (]~(Ii,/j)] = Iz(i)U~(Ii, I ] ) -  5r~(Ii, Ij)I~(j). (B.1) 

To apply the multiplication rule for unit spherical tensors derived in appendix A, 
it is necessary to convert the non-unit operators I~(i) into unit form. Using the nor- 
malization factor given by [11] we find 

[ (2Ii + 2)! ]1/2 
Iz(i) = r~(i) = [12--~-Ii ~2-i-)!J Iz(i) = U(Ii)fJ~(Ii, Ii), 

where the normalization constant is given by 

(2Ii + 2)! ],/2 [ 
N(Ii) = [12-~-I7~2 ]-)!j 

Thus 

[2=., ~r~(/i,/j)] _= N(Ii)O~(Ii, Ii)V~(Ii, I j ) -  N(/j) ~r~(//,/j) ~r~ (/j,/j). 

Using the multiplication rule for unit spherical operators, we find 

[2z, 0~(Ii,/j)] _ 

" K 1 

x L I j  I, 

(B.2) 

(B.3) 

(B.4) 

X }(IOKQIXQ)fJ~(I i  Ii ' IJ ) me 

X 
Ij } (KQIOIXQ)fJ~( I ,  Ij) 

= v ~ ~  1(-1) I'+6 ~_,(-1)X(IOKQIXQ)fJ~(Ii ,  Ij)C[Ii, Ij, K ,X] ,  
x 

(B.5) 
where the coefficient C[Ii, Ij, K, X] is given by 

1 X X _(_l )X_X_iN(I j )  Ii Ij Ij. C[Ii, Ij, K,X] = N(I,) Ij Ii Ii 

In arriving at (B.5), use has been made of the symmetry properties of both the 3j 
and 6j coefficients. 

Because of the vector coupling rule for the 6j coefficients appearing in (B.5) and 
(B.6), X can only take on the values K - 1, K, K + 1. Thus there are three cases to 
be considered. If we set 5£ = K + 1 then 

{1  g K + I } _ N ( / ] ) { 1  K K + I }  (B.7) 
C[Ii, Ij, K , X ] = N ( I i )  Ij Ii Ii Ii 6" 6 " 

Using an identity given by [13] (eq. (6.3.1)) it can be shown that 



1 K K + I  

6 Ii Ii 
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} = { / J / i l  K K+l} i i  

= (_l)ii+b+K+l [ 2(2K)~2Ii-  1~ .]1/2 
k(2K+3)!(21i+2)! J G(&/j,K), (B.8) 

where 

G(Ii, 6, K) = [(ti + Ij + X + 2)(/j - Ii + X + 1) 

x (Ii - Ij + K + 1)(I/+ 6" - K)] 112 , 

which is symmetric in Ii and/j. Using (B.8) it is easily shown that 

{1  K K + I } / { 1  K K + I }  
Ij I, Ii Ii Ij Ij = N ( I j ) / N ( I , ) .  

(B.9) 

(B.10) 

Thus the coefficient C[//,/a., K, K + 1] of (B.7) vanishes identically. In a similar 
fashion it can be shown that C[Ii, Ij, K, K - 1] = 0. So the sum over in (B.5) 
reduces to just one term = K. 

Using another 6j identity, (see ref. [7, table 5]), formulae for the 6j symbol, it 
can be shown that 

} 2 [ I j ( I j + l ) + K ( K + l ) - I i ( I i + l ) ]  (B.11) 
Ii lj K K =(_l)li+i&K+l× N ( I j ) x / 2 4 K ( 2 K + l ) ( 2 K + 2 )  

thus 

4K(K + 1) C[Ii,/j, K, K] = (-1) It+/j+K+l (B.12) 
V/24K(2K + 1)(2K + 2) 

On substituting (B. 12) into (B. 5) therefore, with 

( IOKQIKQ) = Q (B.13) 
x / K ( K  + 1) '  

we find 

[z, [J~(Ii,/j)] -= (-1)2(I'+Ij+K)QfJ~(Ii, Ij), (B.14) 

which holds for all K, integer or half-integer. Finally, since (Ii + Ij + K) is an inte- 
ger for all possible values of It,/j, and K by virtue of the vector coupling rule, we 
may conclude that 

[z, (]~(/i,/j)] = QfJl~(li, Ij) (B.15) 

as asserted in the text. 
Commutation relationships involving ± are readily obtained by a modest adap- 

tation of the above treatment. 
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Appendix  C 

NORMALIZED CREATION AND ANNIHILATION OPERATORS 

It is evident from an examination of the 3 x 2 matrices in eq. (20), that the magni- 
tudes of all the entries must be less than 1, otherwise the spherical tensors would 
be unnormalized. Thus it is impossible to generate fully stretched wave functions 
II, M - - - + I )  with unit amplitude. We seek therefore that a general coefficient 
which can be used to circumvent this difficulty. 

By definition, the unit spherical tensor is given by 

(IxM1[O~(II,I2)II2M2) = ( _ l ) I 2 _ M I ~ (  I1 K 1 2 ) .  (C.1) 
-M1 Q Ma 

For the fully "stretched case", Q --- K, M1 = I1 therefore 

( 1 1  g /r e - K )  
( I I I I I fJ f f ( I I ' I1-  K) I I1 -  KII - K ) =  ( - 1 ) - K ~  -I1 K I1 

(c.2) 
It can be shown, using eq. (3.7.10) of Edmonds, that the Wigner 3j coefficient 
appearing in (C.2) reduces to: 

( 1 1  K e l - K ) = ( _ 1 ) 2  K 1 (C.3) 
-11 K I1 x / 2 I I + l  

Consequently, 

i ,,+K /2K+ 1 (C.4) ( : IZxI fJ~(II ' I I -K)II1-KII-K)=k- ' )  V~-ll+ 1 

Thus if we define the creation operator 

= -K 2/~--1 q-211 + 1 ^K 
CKK(I1, e l -  K) t (--1) ~[~£.-------------7~g~(Ii,I1- K),  (C.5) 

y z/k -1- i 

then 

(Ii111C~(I1,I1 - K)*111 - K [ 1  - K )  = 1 ,  

as required. 

(C.6) 
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